Investigation of the Microwave Spectrum of Cyclopropyl Isocyanate. An Example for the Failure of Centrifugal Distortion Theory

C. Heldmann and H. Dreizler

Abteilung Chemische Physik im Institut für Physikalische Chemie der Universität Kiel

Z. Naturforsch. 45a, 1175-1184 (1990); received July 9, 1990

The vibrational ground state microwave spectrum of cyclopropyl isocyanate was investigated in the region from 8.4 to 40 GHz by microwave Fourier transform (MWFT) spectroscopy. The quadrupole hyperfine structure was resolved and assigned. The quadrupole coupling constants are given. With respect to the data given in the literature up to now, this work led to a more profound description of the pure rotational spectrum. Furthermore, some interesting and surprising results concerning the effect of centrifugal distortion are presented. Compared to hitherto existing investigations, these results indicate a more complicated conformational behaviour of cyclopropyl isocyanate.

Introduction

The first investigations of cyclopropyl isocyanate in 1988 by microwave, infrared and Raman spectroscopy were carried out by Durig, Berry and Wurrey [1]. They presented data about the conformational stability, structure, dipole moment, as well as the vibrational assignment of cyclopropyl isocyanate. From known structural parameters of cyclopropyl isothiocyanate [2], Durig et al. evaluated sets of rotational constants for various assumed conformers and compared them with the rotational constants obtained from the assignment of the microwave spectrum in the region from 18.5 to 40 GHz. The cis and trans conformation corresponded best with the observed values.

The results of our reinvestigation, and in particular the failure of the centrifugal distortion analysis, indicate a more complicated conformational behaviour of cyclopropyl isocyanate. Especially, there are some doubts about the existence of a cis conformation. Thus, the expression "cis" is set in quotation marks in this paper.

Another important item concerning this investigation is the resolution and assignment of the quadrupole hyperfine structure of the spectrum of cyclopropyl isocyanate since no quadrupole coupling constants were determined up to now.

Reprint requests to Prof. Dr. H. Dreizler, Institut für Physikalische Chemie der Universität Kiel, Ludewig-Meyn-Str. 8, D-2300 Kiel.

Experimental Methods

Cyclopropyl isocyanate was prepared according to a method of Kricheldorf and Regel [3, 4] by a two-step procedure. In the first step dichloro diphenyl silane 1 (Aldrich) reacts with sodium azide in quinoline to yield diphenyl diazido silane 2:

$$\begin{array}{c} (C_6H_5)_2SiCl_2 + 2\;NaN_3 \\ \\ \hline 1 \\ \hline \frac{\text{quinoline}}{^{10\;h/120\;^\circ\text{C}}} & 2\;NaCl + (C_6H_5)_2Si(N_3)_2\;. \\ \\ \hline \end{array}$$

The solvent was dried with calcium hydride for about two hours to remove traces of water. Cyclopropyl isocyanate 4 is formed by a reaction according to Curtius of cyclopropyl carbonyl chloride 3 (Aldrich) with the intermediate product 2:

The product 4 was purified under vacuum in a fraction column. The purity was checked by NMR and gaschromatography. No impurities were found with these methods. Cyclopropyl isocyanate is a colourless liquid (b.p.: 78-79 °C). The substance can immediately be identified by its irritating effect and provocation of lacrimation. The compound is sensitive to traces of water and was stored in a sample tube at -178 °C (liq. nitrogen).

0932-0784 / 90 / 0900-1175 \$ 01.30/0. - Please order a reprint rather than making your own copy.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

The investigations of cyclopropyl isocyanate were carried out with our standard microwave Fourier transform spectrometers combined with double-resonance techniques in the region from 8.4 to 40 GHz [5–9]. Sample pressures in the waveguide spectrometers were often < 0.3 mTorr (< 0.04 Pa) and temperatures were about -50 °C.

The transition frequencies of the multiplet components were evaluated by a least squares fit of the time domain signal [10] to avoid overlapping effects.

In addition, some results were obtained with a beam spectrometer described in [11]. For the measurements we used argon containing ca. 1% cyclopropyl isocyanate at a stagnation pressure of 380 Torr $(5 \cdot 10^4 \text{ Pa})$.

Results and Analysis

Figure 1 shows the conformers trans and cis cyclopropyl isocyanate in their principal axes system. The notation cis/trans characterizes the relative orientation of the cyclopropyl frame and the N=C=Ogroup with respect to the N-C bond. The trans conformer possesses an a, c-, the cis conformer an a, bplane of symmetry. Furthermore, the polar NCO group lies approximately in the direction of the a-axis. Thus, a-type transitions should be the most intense ones in the microwave spectrum. The remaining components μ_c (trans) and μ_b ("cis") are expected to be smaller, whereas the μ_b (trans) and μ_c ("cis") components are zero because of symmetry properties. The microwave investigation of Durig et al. leads to the dipole moments: $\mu_a = 2.56(2) D$, $\mu_c = 0.71(3) D$, $\mu_b = 0 D$ for the trans and $\mu_a = 2.720(4)$ D, $\mu_b = 0.17(1)$ D, $\mu_c = 0$ D for the "cis" isomer.

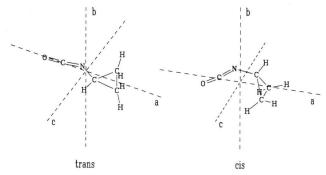


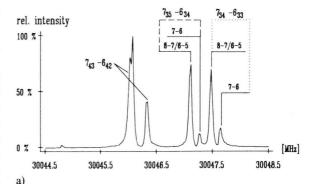
Fig. 1. Schematic diagram of trans and cis cyclopropyl isocyanate in their principal axes system. The molecular structure is take from the data in [1].

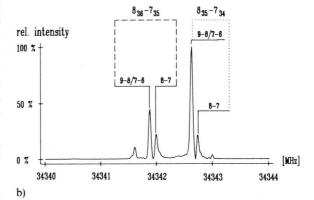
For the reason of intensity we tried to resolve and assign the quadrupole hyperfine structure of the a-type spectrum. We started with the trans conformer and obtained the quadrupole coupling constants $\chi^+ = (\chi_{bb} + \chi_{cc})$ by an iterative measurement and fit procedure of R-branch series with low J. χ^- = $(\chi_{bb} - \chi_{cc})$ was not accessible, the observed transitions being nearly independent of this constant. Thus, we attempted to measure c-type transitions. Because of the large uncertainty of the rotational constant A [1], we used double-resonance techniques with the pump/ signal combination in the V/Ku band. We found the Q-branch series $J_{1J}-J_{0J}$ with J=3 to J=12, which enabled us to gradually evaluate the A and χ^- constants. Subsequently, the value of χ^- was refined by measurements of the J'-J=3-2 transitions with a beam spectrometer using its high capability for resolution and sensitivity.

The investigation of the "cis" conformer was more difficult. At the beginning, no consistent assignment of the quadrupole hyperfine structure, even for the a-type spectrum, was possible. The A constant was not well determined by Durig et al., and there were no suitable double-resonance combinations which could simplify the search for the b-type transitions. After some unsuccessful attempts with conventional continuous-wave Stark modulation techniques and continuous-wave double-resonance methods in the Ku/K band (pump/signal) we refrained from measurements of b-type transitions and evaluation of the A constant. An explanation of this unsuccessful experimental result may be the lower theoretical line strength in comparison with a-type transitions (factor: ≈ 260).

Moreover, it was not possible to observe any transitions of "cis" cyclopropyl isocyanate in the beam spectrometer. Thus, the trans must be more stable than the "cis" conformation. This corresponds with the data of Durig et al. The impossibility of the observation of "cis"-transitions in a beam spectrometer leads to another fact: during the short time of cooling down in the molecular beam, the majority of the "cis-molecules" is apparently transformed into the trans conformation. Thus, the energy barrier should be low between the two conformational states.

On account of the above mentioned difficulties of the "cis" conformer we measured a-type R-branch J-series $(J_{K_-K'_+}-(J-1)_{K_-K_+})$ for the "cis" (J=5, 6, 7, 8, 9) and trans (J=8, 9, 10, 11) isomer in the K and V band. We started for each J value with the $K_-=0$ transition, then searched for the $K_-=1$ lines and so


on. The transitions were assigned by means of their quadrupole hyperfine splittings. This is corroborated by Fig. 2 representing the $K_{-}=3$ transitions for J=7, 8, 9. The quadrupole hyperfine structure is not resolvable for $K_{-}=0$, 1 transitions. In general, the splitting of the $K_{-}=2$ transitions can be observed, but they are very small. Therefore, the extrapolation to larger splittings could lead to uncertainties and incorrect assignments. For this reason the typical pattern of the $K_{-}=3$ lines (Fig. 2) is of particular importance for this investigation. The $K_{-}=3$ lines are characterized by a small K-doublet splitting combined with a sufficient quadrupole hyperfine splitting ensuring a correct extrapolation. A comparison of Figs. 2a, 2b, and 2c indicates that according to theory the asymmetry splitting increases and the quadrupole splitting decreases with increasing J value. For all measured transitions a consistent assignment with respect to the fit of the quadrupole coupling constants could be evaluated in combination with double-resonance techniques.


Table 1 contains the evaluated values of the quadrupole coupling constants for trans and "cis" cyclopropyl isocyanate.

Carrying out the measurement procedure by following increasing K_{-} as described above, we obtained a very surprising result. The frequencies of the $K_{-}=0$, 1, 2 transitions correspond (within the standard error) with the prediction of the spectrum including centrifugal distortion effects. The frequencies of the lines with

Table 1. Quadrupole coupling constants of trans and "cis" cyclopropyl isocyanate. Numbers in parentheses represent single standard errors in units of the last quoted digit.

trans cyclopropyl isocyanate	Correlati	ion matrix				
	χ^+	χ^-				
$\chi^{+} = -2.6306(26) \text{ MHz}$ $\chi^{-} = -0.1372(36) \text{ MHz}$	1.00 0.07	1.00				
Standard deviation of the fit: 3 kHz	$\begin{array}{l} \chi_{aa} = 2.6306(26) \\ \chi_{bb} = -1.3839(31) \\ \chi_{cc} = -1.2467(31) \end{array}$					
"cis" cyclopropyl isocyanate	Correlat	ion matrix				
	χ+	χ^-				
$\chi^{+} = -2.5647(49) \text{ MHz}$ $\chi^{-} = 0.440 (10) \text{ MHz}$	1.00 0.00	1.00				

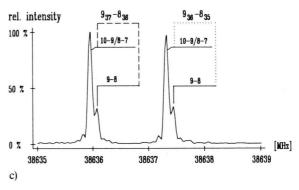
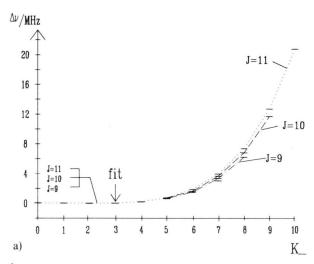



Fig. $2\,a$ –c. The $K_-=3$ transition for J=7, 8, 9. The $K_-=3$ transitions are characterized by a small K-doublet splitting in combination with a quadrupole hyperfine splitting. This typical pattern was important for the confirmation of the assignment. a) Transitions 7_{35} – 6_{34} and 7_{34} – 6_{33} (and 7_{43} – 6_{42}): 0.2 mTorr, $-50\,^{\circ}$ C, polarisation frequency: 30 048.5 MHz, sample interval: 10 ns, 1024 data points supplemented by 3072 zeros before Fourier transformation, 76 800 k experiment cycles (1 k = 1024). b) Transitions 8_{36} – 7_{35} and 8_{35} – 7_{34} : 0.2 mTorr, $-50\,^{\circ}$ C, polarisation frequeny: 34 343 MHz, sample interval: 10 ns, 1024 data points supplemented by 3072 zeros before Fourier transformation, 45 440 k experiment cycles. c) Transitions 9_{37} – 8_{36} and 9_{36} – 8_{35} : 0.2 mTorr, $-50\,^{\circ}$ C, polarisation frequency: 38 637 MHz, sample interval: 10 ns, 1024 data points supplemented by 3072 zeros before Fourier transformation, 16 600 k experiment cycles.

 $K_- > 2$ showed considerable deviations from the prediction depending on the value of K_- . In general, the deviations increase with K_- , but there are also some differences in the K_- -dependence of the deviations for the trans and "cis" conformer. Figures 3a and 3b present the dependence of the deviation Δv (difference between the calculated central frequency and the ob-

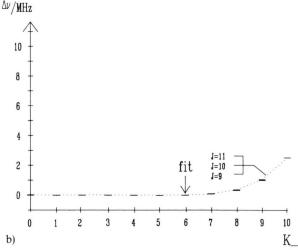


Fig. 3a and b. Deviations Δv from a fit using Van Eijck's centrifugal distortion Hamiltonian for trans cyclopropyl isocyanate. The deviations strongly depend on the angular momentum projection quantum number K_- (in this figure only presented for J=9, 10, 11). Table 3 contains the evaluated spectroscopic constants for the different fits. a) Deviations from a fourth order centrifugal distortion fit. Transitions with $K_->3$ are weighted with the factor 1/1000 in the fit. This is indicated by the arrow \downarrow . b) Deviations from a sixth order centrifugal distortion fit. Transitions with $K_->6$ are weighted with the factor 1/1000 in the fit. This is indicated by the arrow \downarrow . In comparison to a), the axis concerning Δv is spread by the factor 2.

served value) on the quantum number K_{-} for different J values for the trans conformer. Figure 3 a is based on a fit using Van Eijck's fourth order centrifugal distortion Hamiltonian, Fig. 3b implies terms of Van Eijck's sixth order Hamiltonian. In Fig. 3a transitions with $K_{-} > 3$ are weighted with the factor 1/1000 in the fit (which actually means: excluded from the fit) to get an acceptable standard deviation for the fit. This is indicated by the arrow \downarrow in the picture. Figure 3a shows that the deviation Δv gets large with increasing K_{-} (e.g. for $K_{-}=10$: $\Delta v = 22$ MHz) but in a way indicating a functional continuity. Δv is extremely decreased by consideration of the sixth order centrifugal distortion Hamiltonian (the Δv -axis is spread by the factor 2 in Figure 3b). In addition, it is possible to consider a greater number of transitions in the fit. Transitions with $K_{-} > 6$ are still weighted with the factor 1/1000. Hopefully, an eighth order centrifugal distortion Hamiltonian will eliminate the remaining deviations.

Table 2 contains all measured transition frequencies of the trans conformer including the quadrupole hyperfine structure, the (hypothetical) central frequency v_0 and the calculated central frequencies resulting from a fourth $(^4v_0)$ and sixth $(^6v_0)$ order centrifugal distortion fit. The evaluated sets of the rotational as well as Van Eijck's centrifugal distortion constants for the different fit procedures (according to Figs. 3a and 3b) are given in Table 3.

The deviations from a Van Eijck fourth order centrifugal distortion fit for the "cis" isomer is illustrated by Figure 4. The fit includes all measured transition frequencies for K_{-} values up to $K_{-} = 2$. The relatively

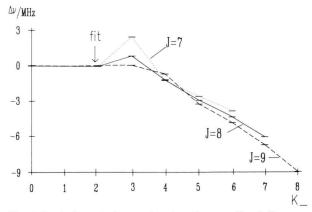


Fig. 4. Deviations Δv from a fourth order centrifugal distortion fit in dependence on K_{-} for "cis" cyclopropyl isocyanate. Transitions with $K_{-} > 2$ are weighted by the factor 1/100. This is indicated by the arrow \downarrow .

Table 2. Measured transition frequencies $v_{\rm obs}$ of trans cyclopropyl isocyanate including the quadrupole hyperfine splitting. The hyperfine components are characterized by their overall angular momentum quantum number F-F'. $\delta_{\rm HFS}$: quadrupole hyperfine splitting referred to the strongest component. \ll : not resolvable hyperfine components. n.r. not resolvable quadrupole hyperfine structure of the transition. $\Delta(\delta_{\rm HFS})$: deviation of the experimental and calculated splitting. v_0 : hypothetical unsplit ("central") line frequency calculated with the quadrupole hyperfine splitting $\delta_{\rm HFS}$ for each component. v_0 is the arithmetic mean of these values. 4v_0 : calculated (hypothetical) unsplit line frequencies using Van Eijck's fourth order centrifugal distortion Hamiltonian. This corresponds to Figure 3 a. ${}^4\Delta v_0 = {}^4v_0 - v_0$. 6v_0 : calculated (hypothetical) unsplit line frequencies using Van Eijck's sixth order centrifugal distortion Hamiltonian. This corresponds to Figure 3 b. ${}^6\Delta v_0 = {}^6v_0 - v_0$. In addition, see Table 3 for the conditions of the centrifugal distortion fits. In the table caption it should be: F-F'.

J K_ K+	J'K_'K ₊ '	F'-F	v _{obs}	δ _{HFS} Δ(δ _{HFS})	4°0 6°0	⁴ Δν _ο 6 _{Δν} ο	J	K_	K ₊	J	'K_	'K ₊	•	F'-F	Vobs	b _{HFS} Δ	(d _{HFS})	4°0 6°0	⁴ Δν _ο , ⁶ Δν _ο ,
			[MHz]	[MHZ] [kHz]	[MHz]	[MHz]									[MHz]	[MHZ]	[kHz]	[MHz]	[MHz]
3 1 3	3 0 3	4-4 3-3 2-2	14987.550 14987.310 14987.636	0.240 2 -0.086 1	14987.491 14987.502 14987.487	0.011	3	0	3		2	0	2	4-3 3-2 2-1 3-3	10500.354 10500.384 10500.518 10501.231	-0.030 -0.164 -0.877	-1	10500.386 10500.386 10500.384	-0.000 -0.002
4 1 4	4 0 4	5-5 4-4 3-3	14852.589 14852.431 14852.624	0.158 0 -0.035 6	14852.540 14852.559 14852.547	0.019 0.007	8	0	8		7	0	7		n. r.			27983.938 27938.946 27938.934	0.008 -0.004
5 1 5	5 0 5	6-6 4-4 5-5	14685.221 ((14685.102	0.0 - 0.119 5	14685.187*) 14685.178 14865.170	0.009 -0.017	9	0	9		8	0	8		n. r.			31476.005 31476.017 31475.999	0.012 -0.006
6 1 6	6 0 6	7-7 5-5 6-6	14486.247 << 14486.158	0.0 - 0.089 0	14486.221 14486.225 14486.222	0.004 0.001	13	1 0	11		10	0 1	.0		n. r.			38453.698 38453.724 38453.690	0.026 -0.008
7 1 7	7 0 7	8-8 6-6 7-7	14256.767 << 14256.692	0.0 - 0.075 2	14256.746*) 14256.742 14256.743	-0.004 -0.003	3	1	2		2	1	1	4-3 3-2 2-1 3-3	10603.053 10603.289 10603.062 10603.732	-0.236 -0.009 -0.679	0	10603.123 10603.120 10603.122	-0.003 -0.001
8 1 8	8 0 8	9-9 7-7 8-8	13997.958 << 13997.901	0.0 - 0.057 -5	13997.938*) 13997.943 13997.948	0.005 0.010	3	1	3		2	1	2	2-2 4-3 3-2	10602.371 10398.506 10398.739	0.682	2	10398.574 10398.573	-0.001
9 1 9	9 0 9	10-10 8-8 9-9	13711.235 << 13711.182	0.0 - 0.053 1	13711.222*) 13711.215 13711.223	-0.007 0.001								3-3 2-2	10399.141 10397.881		0	10398.575	0.001
10 1 10	10 0 10	11-11 9-9 10-10	13398.141 << 13398.089	0.000 - 0.052 4	13398.126*) 13398.116 13398.125	-0.010 -0.001	8	1	7	7	1	6			n. r.			28270.413 28270.409 28270.416	-0.004 0.003
11 1 11	11 0 11	12-12 10-10 11-11	13060.385 << 13060.339	0.000 - 0.046 2	13060.369*) 13060.366 13060.374	-0.003 0.005	8	1	8		7	1	7		n. r.			27725.142 27725.148 27725.139	0.006 -0.003
12 1 12	12 0 12	13-13 11-11 12-12	12699.864 ((12699.823	0.000 - 0.041 1	12699.853 13699.847 13699.852	-0.006 -0.001	9	1	8		8	1	7		n. r.			31802.606 31802.596 31802.605	-0.010 -0.001
18 2 17	18 1 17	19-19 17-17 18-18	39806.201 << 39806.151	0.000 - 0.050 0	39806.191 39806.196 39806.196	0.005 0.005	9	1	9		8	1	8		n.r.			31189.279 31189.290 31189.274	0.011 -0.005
19 2 18	19 1 18	20-20 18-18 19-19	39180.859 << 39180.813	0.000 - 0.046 -1	39180.850 39180.849 39180.849	-0.001 -0.001	10	0 1	9		9	1	8		n. r.			35334.210 35334.199 35334.211	-0.011 0.001
20 2 19	20 1 19	21-21 19-19 20-20	38526.439 << 38526.394	0.000 - 0.045 0	38526.430 38526.426 38526.426	-0.004 -0.004	10	0 1	10		9	1	9		n. r.			34652.896 34652.916 34652.891	0.020 -0.005
21 2 20	21 1 20	22-22 20-20 21-21	37843.673 << 37843.632	0.000 - 0.041 -2	37843.664 37843.663 37843.662	-0.001 -0.002	1	1 1	10		10	1	9		n. r.			38865.157 38865.147 38865.161	-0.010 0.004
22 2 21	22 1 21	23-23 21-21 22-22	37133.379 << 37133.339	0.000 - 0.040 0	37133.370 37133.370 37133.369	0.000 -0.001	1	1 1	11		10	1 1	.0		n. r.			38115.947 38115.974 38115.940	0.027 -0.007
23 2 22	23 1 22	24-24 22-22 23-23	36396.441 << 36396.403	0.000 - 0.038 -1	36396.432 36396.434 36396.436	0.002 0.004	3	2	1		2	2	0	4-3 3-3 3-2 2-2	10500.783 < < 10501.628 < <	-0.845	0	10500.970 10500.965 10500.969	-0.005 -0.001

Table 2 (continued)

J K	_ 1	Κ ₊	J'I	(_'K	+	F'-F	Vobs	$\delta_{\mathrm{HFS}} \Delta(\delta_{\mathrm{HFS}})$	4°0 6°0.	⁴ _{Δν₀} ,	$\mathbf{J} \ \mathbf{K}_{-} \ \mathbf{K}_{+}$	J'K	_'K ₊ '	F'-F	Vobs	δ _{HFS} Δ(δ _{HFS})	4 vo.	⁴ Δν ₀ , 6Δν ₀ ,
_							[MHz]	[MHZ] [kHz]	[MHz]	[MHz]					[MHz]	[MHZ] [kHz]	[MHz]	[MHz]
5	2	3	4	2	2	6-5 4-3 5-4	17504.050 << 17504.240	-0.190 -2	17504.106 17504.102 17504.111	-0.004 0.005	11 3 8	10	3 7	12-11 10-9 11-10	38500.750 38500.790	-0.040 1	38500.763 38500.764 38500.768	0.001
5	2	4	4	2	3	6-5 4-3 5-4	17499.480 << 17499.671	-0.191 -3	17499.536 17499.531 17499.539	-0.005 0.003	11 3 9	10	3 8	12-11 10-9 11-10	38500.138 38500.180	-0.042 -1	38500.153 38500.153 38500.156	-0.000
6	2	4	5	2	3	7-6 5-4 6-5	21006.951 ((21007.069	-0.117 -6	21006.993 21006.979 21006.991	-0.014 -0.002	5 4 2	4	4 1	6-5 5-4 4-3	17493.959 17494.663 17493.752	-0.704 5 0.207 -5	17494.131 17494.267 17494.131	0.136
6	2	5	5	2	4	7-6 5-4 6-5	20998.958 << 20999.067	-0.109 2	20998.992 20998.981 20998.990	-0.011 -0.002	8 4 4	7	4 3	9-8 8-7 7-6	27991.196 27991.374 27991.166	-0.178 1 0.029 9	27991.248 27991.432 27991.244	0.18-
8	2	6	7	2	5		n. r.		28016.292 28016.274 28016.293	-0.018 0.001	9 4 5	8	4 4	9-8 10-9 8-7	31490.550 31490.422 31490.415	0.129 2 0.135 -2	31490.463 ⁺⁺) 31490.658 31490.460	0.19
8	2	7	7	2	6		n. r.		27997.106 27997.093 27997.105	-0.013 -0.001	10 4 6	9	4 5	11-10 9-8 10-9	34989.755 34989.853	-0.098 0	34989.789 34989.988 34989.787	0.19
9	2	7	8	2	6		n. r.		31523.071 31523.056 31523.079	-0.015 0.008	11 4 7	10	4 6	12-11 10-9 11-10	38489.209 38489.278	-0.069 2	38489.230 38489.435 38489.235	0.205
9	2	8	8	2	7		n. r.		31495.681 31495.672 31495.686	-0.009 0.005	8 5 3	7	5 2	8-7 9-8 7-6	27982.994 27982.718 27982.678	0.276 0 0.316 -1	27982.798**) 27983.413 27983.791	0.61
10	2	8	9	2	7		n. r.		35031.521 35031.495 35031.524	-0.026 0.003	9 5 4	8	5 3	9-8 10-9 8-7	31480.964 31480.768 31480.744	0.196 0 0.220 -1	31480.827**) 31481.489 31480.814	0.66
10	2	9	9	2	8		n. r.		34993.891 34993.878 34993.894	-0.013 0.003	10 5 5	9	5 4	10-9 11-10 9-8	34979.006 34978.864 34978.846	0.142 -2 0.160 4	34978.907**) 34979.619 34978.899	0.71
11	2 1	10	10	2	9		n. r.		38491.685 38491.669 38491.687	-0.016 0.002	11 5 6	10	5 5	12-11 10-9 11-10	38477.024 << 38477.137	-0.113 -5	38477.062 38477.807 38477.052	0.74
5	3	2	4	3	1	6-5 5-4 4-3	17498.080 17498.487 17497.980	-0.407 -2 0.100 1	17498.189 17498.211 17498.192	0.022 0.003	7 6 1	6	6 0	8-7 7-6 6-5	24475.666 24476.260 24475.551	-0.594 -9 0.115 -5	24475.838 24477.159 24475.841	1.32
8	3	5	7	3	4	9-8 7-6 8-7	27998.435 << 27998.542	-0.107 1	27998.472 27998.491 27998.474	0.019 0.002	8 6 2	7	6 1	9-8 8-7 7-6	27972.357 27972.752 27972.292	-0.395 0 0.065 -1	27972.470 27973.953 27972.476	1.483
8	3	6	7	3	5	9-8 7-6 8-7	27998.318 << 27998.428	-0.110 -2	27998.357 27998.371 27998.354	0.014 -0.003	9 6 3	8	6 2	9-8 10-9 8-7	31469.337 31469.060 31469.021	0.277 -2 0.316 -1	31469.140**) 31470.771 31469.145	1.63
9	3	6	8	3	5	10-9 8-7 9-8	31498.943 << 31499.014	-0.071 3	31498.965 31498.983 31498.970	0.018 0.005	11 6 5	10	6 4	11-10 12-11 10-9	38462.708 38462.550 38462.535	0.158 3 0.173 4	38462.600**) 38464.486 38462.604	1.88 0.00
9	3	7	8	3	6	10-9 8-7 9-8	31498.725 (7 31498.796	-0.071 3	31498.746 31498.763 31498.750	0.017 0.040	8 7 1	7	7 0	9-8 8-7 7-6	27959.742 27960.277 27959.646	-0.535 0 0.096 1	27959.893 27962.926 27959.972	3.03 0.07
10	3	7	9	3	6	11-10 9-8 10-9	34999.702 7 34999.756	-0.054 0	34999.720 34999.728 34999.723	0.008	9 7 2	8	7 1	10-9 9-8 8-7	31454.853 31455.230 31454.798	-0.377 2 0.055 -1	31454.961 31458.319 31455.048	3.35
10	3	8	9	3	7	11-10 9-8 10-9	34999.325 34999.379	-0.054 0	34999.343 34999.352 34999.346	0.009	10 7 4	9	7 3	11-10 10-9 9-8	34949.983 34950.258 34949.949	-0.275 3 0.034 -1	34950.063 34953.723 34950.151	3.66

Table 2 (continued)

J	K_	K+	J'K	_'K	+'	F'-F	Vobs	BHFS 4	(SHES)	4 vo	⁴ Δν _ο ⁶ Δν _ο
							[MHz]	[MHZ]	[kHz]	[MHz]	[MHz]
11	7	4	10	7	3	12-11	38445.117			38445.182	
						11-10	38445.335	-0.218	-8	38449.138	3.956
						10-9	18445.090	0.027	5	38445.285	0.103
9	8	1	8	8	0	10-9	31437.716			31437.859	
						9-8	31438.210	-0.494	-1	31444.063	0.620
						8-8	31437.639	0.077	1	31438.191	0.332
10	8	2	9	8	1	11-10	34930.946			34931.050	
	•	_		•	•	10-9	34931.305	-0.359	2	34937.847	6.797
						9-8	34930.892	0.054	6	34931.405	0.355
11	8	3	10	8	2	12-11	38424.196			38424.273	
						11-10	38424.464	-0.268	5	38431.630	7.357
						10-9	38424.158	0.038	7	38424.646	0.373
10	9	1	9	9	0	11-10	34908.105			34908.237	
						10-9	34908.560	-0.455	1	34919.940	11.703
						9-8	34908.041	0.064	0	34909.237	1.000
11	9	2	10	9	1	12-11	38399.090			38399.191	
						11-10	38399.433	-0.343		38411.902	12.711
						10-9	38399.047	0.043	0	38400.259	1.068
11	10	1	10	10	0	12-11	38369.023			38369.142	
						11-10 10-9	38369.448 38368.968	-0.425 0.055		38389.924 38371.676	20.782

^{*} The assignment was confirmed with the following doubleresonance combinations:

Signal transition (Ku band) Pump transition (V band
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
9 1 9 - 9 0 9 9 0 9 - 8	0 8
10 1 10 - 10 0 10 10 0 10 - 9 11 1 11 - 11 0 11 11 1 11 - 10	0 9

^{**} $\delta_{\rm HFS}$ is referred to the component with the largest hfs offset from v_0 .

large deviation for the J'-J=2-1 transitions may be due to the fact that K_- reaches the value $K_{-, max}$ (see Table 4). Transitions with $K_->2$ were weighted with 1/100. It is remarkable to notice that the $K_-=3$ transitions show a positive deviation whereas transitions with $K_->3$ are characterized by negative Δv 's. Thus, no obvious functional continuity can be constructed, in contrast to the trans conformer. A centrifugal distortion fit using Van Eijck's sixth order Hamiltonian yields only a gradual improvement.

Figure 5 leads to a slightly modified result. In this case, transitions with $K_{-}=2$, 3, 4 were weighted with the factor 1/1000 in a sixth order centrifugal distortion fit (transitions with $K_{-}>4$ were fully included in the

fit). The small deviations for transitions with K_{-} values $K_{-} < 2$ and $K_{-} > 4$ suggest that only a few transitions (which means in particular the corresponding energy levels) are perturbed by some effects which have to be discussed hereafter. The frequency data of "cis" cyclopropyl isocyanate are given in Table 4. Table 4 is constructed in the same way as Table 2. $^{4}v_{0}$ corresponds

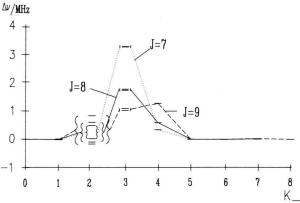


Fig. 5. Deviations Δv from a sixth order centrifugal distortion fit in dependence on K_{-} for "cis" cyclopropyl isocyanate. Transitions with $K_{-}=2$, 3, 4 are weighted with the factor 1/1000. The braces indicate the related K_{-} -doublet transitions for each J.

Table 3. Comparison of the rotational and Van Eijck's centrifugal distortion constants of trans cyclopropyl isocyanate for a fourth and sixth order centrifugal distortion fit. The conditions of the fit are given at the bottom of the Table. Numbers in parentheses represent single standard errors in units of the last quoted digit.

	Fourth order	Sixth order
A	16 941.889(8) MHz	16 941.865(3) MHz
\boldsymbol{B}	1 784.3121(6) MHz	1 784.3117(2) MHz
C	1 716.1278(6) MHz	1 716.1281 (3) MHz
\tilde{D}_I	0.153(2) kHz	0.159(1) kHz
\widetilde{D}_{IK}	52.28(3) kHz	51.72(2) kHz
$\tilde{D}_{\kappa}^{\kappa}$	-6(3) kHz	-7(1) kHz
$\tilde{\delta}_{i}^{n}$	0.027(1) kHz	0.0176(4) kHz
Ř,	-0.019(1) kHz	-0.0179(4) kHz
\tilde{H}_{IK}°	_	1.80(7) Hz
$C \\ \tilde{D}_{JK} \\ \tilde{D}_{JK} \\ \tilde{\delta}_{J} \\ \tilde{\delta}_{J} \\ \tilde{R}_{6} \\ \tilde{H}_{JK} \\ \tilde{H}_{KJ}$	-	-92.8(3) Hz
Weight	of the transitions in the fit:	
	$K_{-} > 3$: $1/1000$	K > 7: $1/1000$
Standar	d deviation of the fit:	
	14 kHz	5 kHz
Highest	correlation:	

 $\tilde{R}_6/\tilde{\delta}_J$: 0.854

 $\tilde{R}_6/\tilde{\delta}_I$: 0.982

Table 4. Measured transition frequencies $v_{\rm obs}$ of "cis" cyclopropyl isocyanate including the quadrupole hyperfine splitting. The hyperfine components are characterized by their overall angular momentum quantum number F-F'. $\delta_{\rm HFS}$, $\Delta(\delta_{\rm HFS})$, \ll , n.r., v_0 : see Table 2. 4v_0 : calculated (hypothetical) unsplit line frequencies using Van Eijck's fourth order centrifugal distortion Hamiltonian. This corresponds to Figure 4. $^4\Delta v_0 = ^4v_0 - v_0$. $^6v_0'$: calculated (hypothetical) unsplit line frequencies using Van Eijck's sixth order centrifugal distortion Hamiltonian. This corresponds to Figure 5. $^6\Delta v_0' = ^6v_0' - v_0$. In addition, see Table 5 for the conditions of the centrifugal distortion fits. In the table caption it should be: F-F'.

J K	_ 1	K ₊	J'I	(_')	'	F'-F	Vobs	$\delta_{\mathrm{HFS}} \Delta(\delta_{\mathrm{HFS}})$	4 ^v 0 6 _{v0} ,	⁴ Δν _ο , ⁶ Δν _ο ,	J	K_	K ₊	J'I	(_'1	ζ+'	F'-F	Vobs	$\delta_{\mathrm{HFS}} \Delta(\delta_{\mathrm{HFS}})$	4 vo 6 vo	⁴ Δν _ο ⁶ Δν _ο
							[MHz]	[MHZ] [kHz]	[MHz]	[MHz]	_							[MHz]	[MHZ] [kHz]	[MHz]	[MHz]
4	0	4	3	0	3	5-4 4-3 3-2	17165.518 << 17165.595	-0.077 -3	17165.539 17165.557 17165.538	0.018	9	1	8	8	1	7		n. r.		38974.968 38974.958 38974.957	-0.010 -0.011
5	0	5	4	0	4		n. r.		21452.073 21452.061 21452.040	-0.012 -0.033	9	1	9	8	1	8		n. r.		38251.947 38251.940 38251.931	-0.007 -0.016
6	0	6	5	0	5		n. r.		25735.307 25735.327 25735.307	0.020 0.000	4	2	3	3	2	2	5-4 4-3 3-2	17169.993 17170.344 17169.903	-0.351 -1 0.089 -1	17170.087 17170.157 17170.399	0.070
7	0	7	6	0	6		n. r.		30014.721 30014.737 30014.721	0.016 0.000	5	2	3	4	2	2	6-5 4-3 5-4	21473.667 ((21473.845	-0.178 3	21473.720 21473.771 21473.925	0.051 0.205
8	0	8	7	0	7		n. r.		34289.692 34289.701 34289.691	0.009 -0.001	5	2	4	4	2	3	6-5 4-3 5-4	21461.446 << 21461.631	-0.185 1	21461.466 21461.553 21461.874	0.087
9	0	9	8	0	8		n. r.		38559.665 38559.668 38559.669	0.003 0.004	6	2	4	5	2	3	7-6 5-4 6-5	25773.505 << 25773.609	-0.104 3	25773.538 25773.540 25773.660	0.002
2	1	1	1	1	0	3-2 2-1 1-0 2-2 1-1	8666.490 8667.282 8665.609 8666.839 8666.753	-0.792 0 0.881 15 -0.349 -7 -0.263 -2	8666.640 8666.554 8666.572	-0.086 -0.068	6	2	5	5	2	4	7-6 5-4 6-5	25752.157 ((25752.268	-0.111 -2	25752.193 25752.189 25752.601	-0.004 0.408
2	1	2	1	1	1	3-2 2-1 1-0	8505.138 8505.939 8504.393	-0.801 1 0.745 -1	8505.296 8505.200 8505.216	-0.096 -0.080	7	2	5	6	2	4	8-7 6-5 7-6	30076.016 30076.085	-0.069 -1	30076.037 30076.004 30076.054	-0.03 0.01
						2-2 1-1	8505.610 8505.188	-0.472 11 -0:050 1			7	2	6	6	2	5	8-7 6-5 7-6	30041.929 30041.993	-0.064 6	30041.947 30041.911 30042.430	-0.03 0.48
5	1	4	4	1	3		n.r.		21662.737 21662.734 21662.763	-0.004 0.026	8	2	6	7	2	5	9-8 7-6	34381.588		34381.600 34381.561	-0.03
5	1	5	4	1	4		n. r.		21259.673 21259.672 21259.702	-0.001 0.029	8	2	7	7	2	6	9-8 7-6	34381.631	-0.043 -5	34381.500 34330.616 34330.573	-0.10
6	1	5	5	1	4		n. r.		25992.966 25992.963 25992.989	-0.003 0.023	9	2	7	8	2	6	8-7		-0.040 9	34331.216 38690.518	0.600
6	1	6	5	1	5		n. r.		25509.554 25509.541 25509.571	-0.013 0.017										38690.567 38690.348	0.04
7	1	6	6	1	5		n. r.		30321.913 30321.901 30321.921	-0.012 0.008	9	2	8	8	2	7		n.r.		38617.978 38618.021 38618.808	0.04
7	1	7	6	1	6		n. r.		29758.317 29758.313 29758.338	-0.004 0.021	7	3	4	6	3	3	8-7 6-5 7-6	30047.452 77 30047.606	-0.154 -6	30047.500 30049.949 30050.771	2.44 3.27
8	1	7	7	1	6		n. r.		34649.328 34649.315 34649.325	-0.013 -0.003	7	3	5	6	3	4	8-7 6-5 7-6	30047.084 30047.235	-0.151 -3	30047.131 30049.576 30050.417	2.44
8	1	8	7	1	7		n. r.		34005.844 34005.829 34005.841	-0.015 -0.003	8	3	5	7	3	4	9-8 7-6 8-7	34342.632 34342.731	-0.099 1	34342.664 34343.501 34344.401	0.83

Table 4 (continued)

J	K_	K ₊	J'I	(_')	(+'	F'-F	Vobs	δ _{HFS} Δ(δ _{HFS})	4 vo	⁴ Δν _ο ⁶ Δν _ο
							[MHz]	[MHZ] [kHz]	[MHz]	[MHz]
3	3	6	7	3	5	9-8 7-6	34341.884		34341.916 34342.756	0.840
						8-7	34341.984	-0.100 0	34343.693	1.777
)	3	6	8	3	5	10-9 8-7	38637.307		38637.332 38637.392	0.060
						9-8	38637.380	-0.073 -2	38638.352	1.020
)	3	7	8	3	6	10-9 8-7	38635.940		38635.964 38636.029	0.06
						9-8	38636.011	-0.071 0	38637.056	1.09
5	4	2	5	4	1	7-6	25753.900	-0.402 2	25754.011	-1 16
						6-5 5-4	25754.302 25753.815	-0.402 2 0.085 -2	25752.845 25754.227	0.21
7	4	3	6	4	2	8-7	30046.032	0.261 4	30046.109	1.04
						7-6 6-5	30046.293 30045.995	-0.261 -4 0.037 -3	30044.865 30046.452	0.34
3	4	4	7	4	3	9-8 8-7	34337.958 34338.130	-0.172 2	34338.010 34336.828	-1.18
						7-6	34337.939	0.019 -1	34338.608	0.59
)	4	5	8	4	4	10-9 8-7	38629.364		38629.411 38628.726	-0.68
						9-8	38629.496	-0.132 -9	38630.687	1.27
5	5	1	5	5	0	7-6 6-5	25751.173 25751.797	-0.624 2	25751.341 25749.124	-2.21
						5-4	25751.018	0.155 3	25751.350	0.00
	5	2	6	5	1	8-7 7-6	30042.751 30043.147	-0.396 2	30042.863 30040.293	-2.570
						6-5	30042.674	0.077 2	30042.863	0.00
3	5	3	7	5	2	9-8 8-7	34334.124 34334.390	-0.266 3	34334.202 34331.301	-2.901
						7-6	34334.085	0.039 -1	34334.202	0.000
9	5	4	8	5	3	10-9 9-8	38625.285 38625.471	-0.186 4	38625.341 38622.122	-3.219
						8-7	38625.265	0.020 -2	38625.339	-0.002
	6	1	6	6	0	8-7 7-6	30038.955 30039.524	-0.569 1	30039.113 30035.310	-3.803
						6-5	30038.839	0.116 -1	30039.106	-0.00
3	6	2	7	6	1	9-8 8-7	34329.642 34330.030	-0.388 -3	34329.753 34325.448	-4.30
						7-6	34329.578	0.064 0	34329.744	-0.009
)	6	3	8	6	2	10-9 9-8	38620.043 38620.314	0.271 2	38620.123 38615.336	-4.78
						8-7	38620.007	0.036 -1	38620.116	-0.00
3	7	1	7	7	0	9-8 8-7	34324.763 34325.280	-0.517 5	34324.909 34318.929	-5.980
						7-6	34324.671	0.092 -1	34324.913	0.004
•	7	2	8	7	1	10-9 9-8	38614.433 38614.796	-0.363 6	38614.537 38607.884	-6.653
						8-7	38614.374	0.059 4	38614.555	0.018
)	8	1	8	8	0	10-9 9-8	38608.359 38608.836	-0.477 3	38608.497 38599.576	-8.92
						8-7	38608.285	0.074 -1	38608.490	-0.00

Table 5. The rotational and Van Eijck's centrifugal distortion constants of "cis" cyclopropyl isocyanate for different fit procedures using a fourth (first column) and sixth order (second column) centrifugal distortion Hamiltonian. Furthermore, different sets of transitions are included in the fits (according to Figures 4 and 5). The conditions of the fits are given at the bottom of the Table. Numbers in parentheses represent single standard errors in units of the last quoted digit. n.d.: not derminable, set to zero.

Sixth order

Fourth order

\boldsymbol{A}	10 215(6)	MHz	10 2	235((3)	MHz
\boldsymbol{B}	2 186.859(6)	MHz	2	186.	856(3)	MHz
\boldsymbol{C}	2 106.172(6)	MHz	2	106.	168(3)	MHz
\widetilde{D}_J	2.01(1)	kHz		2.	06(1)	kHz
\widetilde{D}_{JK}	29.5(3)	kHz		21.	87(7)	kHz
\widetilde{D}_K	n.d.			n.	d.	
$egin{aligned} & \widetilde{D}_J \ & \widetilde{D}_{JK} \ & \widetilde{D}_K \ & \widetilde{\delta}_J \ & \widetilde{R}_6 \ & \widetilde{H}_{JK} \end{aligned}$	0.31(2)	kHz		0.	32(1)	kHz
\tilde{R}_{6}	0.14(1)	kHz		n.	d.	
\widetilde{H}_{JK}	-			-1 .	1(5)	Hz
\widetilde{H}_{KJ}	-			8((1)	Hz
Weight of t	he transitions	in the fit:				
	$K_{-} > 2$: 1/1	00	K_{-}	= 2	2, 3, 4:	1/1000
Standard d	eviation of the	fit:				
	53 kHz		26 1	kHz		
Highest con	rrelation:					
	δ_J/B : 0.888		$\delta_{_{m{J}}}/J$	B :	0.884	

to the fit procedure indicated by Fig. 4, wheras $^6\nu_0'$ corresponds to Figure 5. Table 5 contains the rotational as well as Van Eijck's centrifugal distortion constants. The "conditions" of the fit are summarized at the bottom of the Table.

Attempt at Explanation

The experimental results of the "cis" isomer indicate that the spectrum of cyclopropyl isocyanate cannot be described completely by application of a centrifugal distortion Hamiltonian. To find an explanation for these effects we have to go back to the basic assumptions of conventional centrifugal distortion theory. In addition to the rigid asymmetric rotor Hamiltonian, centrifugal distortion effects are considered in the total Hamiltonian by a potential energy term [12].

The potential energy is formulated as a harmonic potential function [13]. The elements of the inverse moment of inertia tensor are approximated by a series expansion in the internal displacement coordinates

considering only the linear term. Thus, the theory only regards small displacements of the internal coordinates from their equilibrium values [14]. These conditions are obviously not fulfilled for "cis" cyclopropyl isocyanate. Because of the rigidity of the cyclopropyl frame and of the NCO group especially the torsion around the C_{frame}-N bond allows for flexibility of the molecule. If we assume a very flat and anharmonic potential near the "cis" conformation with a low barrier to the trans conformation, the failure of the centrifugal distortion analysis is plausible and the mentioned observation with the beam spectrometer can be explained. This agrees with the statement of Durig et al. who found four excited vibrational states for the trans but only one for the "cis" isomer. They concluded that higher excited states lie above the barrier of internal rotation.

To strengthen the above assumption we tried to calculate the potential function with Gaussian 86 [15]. With a STO-3G basis set a trans and a gauche/gauche minimum potential result by varying the torsion angle in steps of 15°. With an extended 4-31 G* basis set we obtained a cis and a trans minimum potential when starting the computation of the potential energy function from a cis conformation. This clearly indicates the need of further extended quantum chemical calculations (which we cannot perform presently), and of additional microwave investigations of cyclopropyl isocyanate to obtain a proper understanding of the conformational behaviour and the effects concerning centrifugal distortion.

Acknowledgements

We thank our group for help and discussions, especially N. Heineking for initiating the project and M. Meyer for the calculations concerning the program Gaussian '86. The work was supported by the Deutsche Forschungsgemeinschaft, the Land Schleswig Holstein and the Fonds der Chemischen Industrie. C.H. thanks the Studienstiftung des deutschen Volkes for financial support. The calculations were carried out at the computer center of the University of Kiel.

- [1] J. Durig, R. Berry, and C. Wurrey, J. Amer. Chem. Soc. 110, 718 (1988).
- [2] J. Durig, A. Nease, R. Berry, J. Sullivan, Y. Li, and C. Wurrey, J. Chem. Phys. 84, 3663 (1986).
- [3] H. R. Kricheldorf and W. Regel, Chem. Ber. 106, 3753 (1973).
- [4] H. R. Kricheldorf and W. Regel, Chem. Ber. 106, 3765 (1973).
- [5] X-band: G. Bestmann and H. Dreizler, Z. Naturforsch. 37 a, 58 (1982).
- [6] Ku-band: G. Bestmann, H. Dreizler, H. Mäder, and U. Andresen, Z. Naturforsch. 35a, 392 (1980).
- [7] K-band: P. Wolf and H. Mäder, J. Mol. Struct. 190, 287 (1988)
- [8] V-band: Chr. Keussen, N. Heineking, and H. Dreizler, Z. Naturforsch. 44a, 215 (1989).

- [9] W. Stahl, J. Gripp, N. Heineking, and H. Dreizler, Z. Naturforsch. 42a, 392 (1987).
- [10] J. Haekel and H. Mäder, Z. Naturforsch. 43a, 203
- [11] U. Andresen, H. Dreizler, W. Stahl, and J.-U. Grabow, to be published.
- [12] W. Gordy and R. L. Cook, Microwave Molecular Spectra, 3rd edition, John Wiley and Sons, New York 1984, p. 300, (8.2).
- [13] loc. cit. [11], p. 300, (8.1). [14] loc. cit. [11], p. 301, (8.4).
- [15] M. Frisch, Gaussian 86 User's Guide and Programmer's Reference, Multiflower Computer, Inc., Branford, Reversion C Version, 1988.